Влияние пренатальной тревожности и стресса матери на развитие детского мозга и психопатологий

Маргарита Александровна Богданова Татьяна Рафаиловна Томенко

Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия

Influence of Prenatal Maternity Anxiety and Stress on the Development of Children's Brain and Psychopathologies

Margarita A. Bogdanova Tatiana R. Tomenko

Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia

Для цитирования: Богданова, М. А., Томенко, Т. Р. (2023). Влияние пренатальной тревожности и стресса матери на развитие детского мозга и психопатологий. *Lurian Journal*, *4*(1), pp. 46–52. doi: 10.15826/Lurian.2023.4.1.4

To cite this article: Bogdanova, M. A., & Tomenko, T. R. (2023). Influence of Prenatal Maternity Anxiety and Stress on the Development of Children's Brain and Psychopathologies. *Lurian Journal*, *4*(1), pp. 46–52. doi: 10.15826/Lurian.2023.4.1.4

Аннотация. Пренатальный материнский стресс широко распространен и является предиктором многих детских психопатологий. В статье представлен анализ научных публикаций, посвященных изучению онтогенетического влияния пренатального материнского стресса на созревание мозга ребенка. Был проведен систематический обзор доступных прямых измерений развития мозга в стрессовых условиях, включая структурную магнитно-резонансную томографию (МРТ) и диффузионно-взвешенную МРТ. Предложены направления будущих исследований по данной тематике.

Ключевые слова: пренатальный стресс; психопатологии младенцев; нейробиология детского мозга; развитие мозга младенца; психическое развитие ребенка; пренатальная психология

Abstract. Prenatal maternal stress is widespread and is a predictor of many childhood psychopathologies. This article presents an analysis of scientific publications devoted to the study of the ontogenetic effect of prenatal maternal stress on child brain maturation. A systematic review was conducted of available direct measures of brain development under stress, including structural magnetic resonance imaging (MRI) and diffusion-weighted MRI. Directions for future research in this topic are also proposed.

Keywords: prenatal stress; psychopathology of infants; neurobiology of the child's brain; development of the infant's brain; mental development of the child; prenatal psychology

Введение

Исследования последних 20 лет показали, что материнский стресс во время беременности связан с повышенным риском эмоциональных, поведенческих и когнитивных проблем у детей. К ним относятся симптомы тревоги и депрессии, синдром дефицита внимания и гиперактивности (СДВГ), расстройства поведения, расстройства личности (Wolke & Lereya, 2015), расстройства аутистического спектра (Kinney, Miller, Crowley, Huang, & Gerber, 2008). Пренатальный стресс может вызвать изменения в некоторых других аспектах развития. К примеру, уменьшение длины теломер, свидетельствующее о сокращении продолжительности жизни (Entringer, de Punder, Buss, & Wadhwa, 2018). Выявлены также повышенный риск астмы (Cookson, Granell, Joinson, Ben-Shlomo, & Henderson, 2009), изменение соотношения полов при рождении: девочек рождается больше, чем мальчиков (Walsh, McCartney, & Smith, 2019).

Более того, исследования поведения и физиологии плода показывают, что пренатальный стресс матери может влиять на развитие мозга плода еще до рождения.

Развитие мозга ребенка, который рожден матерью, переживавшей повышенный психологический стресс и находившейся в тревожном состоянии во время беременности, может иметь негативные последствия. На данный момент известно, что при стрессе надпочечники матери выбрасывают в кровь гормоны стресса (адреналин, норадреналин, дофамин), а во время положительных эмоций гипоталамические структуры вырабатывают гормоны счастья (эндорфины), которые, проникая через плацентарный барьер, оказывают воздействие на плод. Следовательно, мать и ребенок в одинаковой степени страдают от негативного влияния окружающего мира, которое остается в долговременной памяти ребенка и воздействует на всю его последующую жизнь.

Последствия пренатального стресса могут оказывать воздействие на все области мозга, в результате повышается риск нейропсихиатрических нарушений и нарушений развития нервной системы, изменяются гормональные и физиологические реакции организма и усиливается предрасположенность к ряду болезней, плохому иммунитету и различным психопатологиям. Кроме того, негативные последствия раннего воздействия стресса носят длительный характер, влияя даже

на распространенность нейродегенеративных заболеваний у взрослых, тем самым способствуя передаче риска последующим поколениям.

Главная проблема данной области исследования заключается в том, что дети, подвергшиеся высокому уровню пренатального стресса, испытывают больше родовых осложнений и чаще воспитываются в среде с высоким уровнем стресса, это затрудняет возможность сделать вывод о том, что вектор развития мозга был изменен еще до рождения ребенка. Проведенные исследования на животных показали, что пренатальный стресс приводит к уменьшению разветвленности дендритов, гипомиелинизации и нарушениям формирования синапсов между нейронами в нервной системе.

Необходимы более убедительные доказательства влияния пренательного стресса на мозг плода с целью обнаружения точечных изменений и механизмов нарушений.

Методы измерения и анализа данных структурной и диффузно-взвешенной магнитно-резонансной томографии у младенцев

Структурная магнитно-резонансная томография (MPT) предоставляет информацию о макроскопической анатомии головного мозга (т. е. о белом веществе, сером веществе, цереброспинальной жидкости) и отдельных структурах относительно объема мозга. Для исследования объемов мозга чаще всего применяется алгоритм Draw EM. Это программное обеспечение с открытым исходным кодом для сегментации MPT головного мозга новорожденных. Далее проводится анализ, который направлен на изучение объемов головного мозга новорожденных на уровне вокселей с использованием тензорной морфометрии. Этот метод использует градиенты полей деформации для выявления региональных структурных различий. В результате получаются деформационные матрицы Якоби, которые содержат информацию о локальном расширении и сжатии.

По сравнению с МРТ, проводимой у взрослых, МРТ новорожденных имеет определенные ограничения, которые необходимо учитывать:

- наличие движений (поскольку новорожденных нельзя попросить лежать в сканере неподвижно);
- небольшой размер головного мозга (требующий более высокого разрешения);
- биологические различия (такие как более высокое содержание воды и меньшее количество миелина в белом веществе);
- различия, которые существуют в протоколах сканирования, качестве изображения и опыте между исследовательскими группами.

Однако в последние годы качество неонатальных MPT-изображений повысилось благодаря увеличению напряженности поля, а также другим техническим разработкам (плотно прилегающие катушки для головы, коррекции лишних движений).

Диффузионная MPT предоставляет информацию об анатомических связях головного мозга, а также о микроструктуре тканей путем оценки движения молекул воды в тканях.

Для анализа результатов диффузионной MPT используют обычно интерфейс предварительной обработки DSI Studio — это программный инструмент для трактографии, который отображает связи мозга и сопоставляет полученные данные с нейропсихологическими расстройствами.

Каждый направленный объем визуально проверяется на наличие артефактов, а объемы, загрязненные движением или искажениями, удаляются.

Из-за относительно низкой миелинизации аксонов у новорожденных для каждого волокна используется достаточно низкий порог анизотропии — 0.01, чтобы иметь возможность моделировать результаты младенцев.

Данные диффузно-взвешенной и структурной магнитно-резонансной томографии о развитии мозга ребенка, подвергшегося пренатальному стрессу

Лонгитюдное проспективное исследование (Buss, Davis, Muftuler, Head, & Sandman, 2010), в котором принимало участие 35 женщин, подвергшихся тревоге и стрессовым состояниям на 19, 25 и 31-й неделях беременности, показывает, что стресс влияет на размер префронтальной коры, которая, в свою очередь, отвечает за развитие исполнительных функций, таких как контроль внимания, рабочая память и когнитивная гибкость. Когда детям исполнилось 6-9 лет, развитие их нервной системы было оценено при помощи МРТ. С применением морфометрии на основе вокселей было обнаружено локальное снижение плотности серого вещества в связи с тревогой матери во время беременности. Подсчет происходил после учета общего объема серого вещества, возраста, гестационного возраста при рождении и послеродового воспринимаемого стресса. При этом стресс и тревога на 19-й неделе больше влияли на уменьшение объема серого вещества в префронтальной коре. Высокая тревога при беременности на 25-й и 31-й неделе беременности не была значимо связана с локальным уменьшением объема серого вещества. Измененный объем серого вещества в областях мозга, затронутых пренатальной материнской тревожностью, может сделать развивающегося человека более уязвимым для неврологических и психических расстройств, а также когнитивных и интеллектуальных нарушений.

Данные результаты структурной магнитно-резонансной томографии согласуются с результатами исследований, показывающих влияние пренатального стресса на развитие структур префронтальной коры.

В следующем исследовании (Wu et al., 2020) проводили МРТ головного мозга плода в 2 разных периодах — между 24-й и 40-й неделями беременности. Проводились измерения объема всего головного мозга плода, коркового серого вещества, белого вещества, серого вещества глубинных структур мозга, мозжечка,

ствола мозга и гиппокампа по трехмерным реконструированным Т2-взвешенным МРТ-сканам. Принимало участие 119 женщин, проведено 193 МРТ-исследования (56 % женщин с плодом мужского пола, 44 % с плодом женского пола, средний возраст матери 33.46 года). Материнская тревожность повлияла на снижение объема левого гиппокампа плода, а также на повышенную извилистость коры головного мозга плода в лобной доле (ускоренное свертывание коры головного мозга).

В лонгитюдном исследовании (Marečková et al., 2019) длиной в 25 лет изучались степень связи пренатального стресса со структурой коры головного мозга и настроением в молодом возрасте, и различия этих взаимосвязей в зависимости от пола. В исследовании приняли участие 93 матери, которые подверглись стрессовым жизненных событиям в первые 20 недель беременности. Информация от матерей была получена в 1990-1992 гг. МРТ и данные, связанные с настроением, были собраны в 2015 г. Анализ МРТ был сосредоточен на общем объеме серого вещества и объеме серого вещества областей коры, ранее связанных с депрессией. Было обнаружено, что более высокий пренатальный стресс предсказывал большую дисрегуляцию настроения в молодом возрасте. Результаты также показали, что у молодых людей с большим воздействием стресса в пренатальном периоде был более низкий общий объем серого вещества коры головного мозга (с поправкой на общий объем мозга) и более низкий глубинный объем серого вещества (с поправкой на общий объем мозга) в средней дорсолатеральной лобной коре, передней поясной коре и предклинье (часть верхней теменной доли на медиальной поверхности каждого полушария головного мозга).

Результаты исследований подтверждают влияние пренатального стресса на объем серого вещества корковой области и некоторых глубинных структур мозга.

В ноябре 2020 г. было проведено исследование (Stoye et al., 2020), в котором проверялась гипотеза о том, что активность материнской гипоталамо-гипофизарнонадпочечниковой оси, измеряемая концентрацией кортизола в волосах, связана с микроструктурой, структурными связями и объемом миндалевидного тела младенца. В исследовании приняли участие 78 пар мать — младенец. Образцы волос брали через 3.5 дня после родов. МРТ проводилась в доношенном возрасте во время сна. При этом измененная микроструктура миндалевидного тела мозга наблюдалась только у мальчиков, а изменения связности областей миндалины характерны только для девочек.

Ученые определили, что высокий уровень кортизола в волосах матери связан со структурными изменениями в миндалевидном теле мозга младенцев, а также с различиями в нейронных связях. Этим можно объяснить то, почему дети, чьи матери испытывали стресс во время беременности, с большей вероятностью будут иметь проблемы с контролем эмоций.

Также выяснилось, что высокая концентрация гормона провоцировала более низкую фракционную анизотропию (определяет уровень белого вещества в нервных трактах) у девочек в мезолимбических путях между правой миндалиной и скорлупой головного мозга по сравнению с мальчиками.

Авторы предположили, что половые различия в реакции на кортизол можно объяснить несколькими способами. Во-первых, способность плаценты регулировать прохождение кортизола от матери к плоду различается в зависимости от пола будущего ребенка. Во-вторых, данные исследований экспрессии генов указывают на то, что пол влияет на прямое действие кортизола в плаценте. Кроме того, определенную роль играет разница в экспрессии рецепторов глюкокортикоидов и минералокортикоидов, а также кортиколиберина.

Заключение

Изначально в исследованиях изучалось влияние пренатального стресса на беременность и развитие плода, особенно на недоношенность и массу тела ребенка при рождении, а в последнее время акцент сместился на выявление долгосрочных последствий в поведенческом и эмоциональном развитии ребенка. Результаты исследований анализируются, их недостатки обсуждаются, в частности, в отношении определений стресса, тревоги и депрессии, способов измерений стресса, контроля за состояниями. Представляется необходимым лонгитюдно и точечно оценивать способность или склонность матери реагировать на стрессор в каждом триместре беременности, отличать хронический стресс от депрессивного расстройства и принимать во внимание такие переменные, как события прошлой жизни, социокультурные факторы, повторяемость стрессовых событий, социальная поддержка. Кроме того, может быть полезно одновременно исследовать стресс, тревогу и депрессию во время беременности, а также после нее, чтобы лучше понять их взаимосвязь и оценить их специфическое влияние на беременность и развитие ребенка. Наконец, перспектива дальнейших исследований может заключаться в комплексном психологическом и биологическом подходе к изучению у беременных женщин субъективно воспринимаемого стресса и объективных физиологических реакций на него, их влияние на развитие плода и ребенка, а также на взаимодействие матери и младенца.

Литература

Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. *Psychoneuroendocrinology*, 35(1), 141–153. https://doi.org/10.1016/j.psyneuen.2009.07.010

Cookson, H., Granell, R., Joinson, C., Ben-Shlomo, Y., & Henderson, A. J. (2009). Mothers' anxiety during pregnancy is associated with asthma in their children. *Journal of Allergy and Clinical Immunology*, 123(4), 847–853. https://doi.org/10.1016/j.jaci.2009.01.042

- Entringer, S., Punder, K. de, Buss, C., & Wadhwa, P.D. (2018). The fetal programming of telomere biology hypothesis: An update. *Philosophical Transactions of the Royal Society, 373*(1741), 1–15. https://doi.org/10.1098/rstb.2017.0151
- Kinney, D. K., Miller, A. M., Crowley, D. J., Huang, E., & Gerber, E. (2008). Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. *Autism and Developmental Disorders*, 38, 481–488. https://doi.org/10.1007/s10803-007-0414-0
- Marečková, K., Klasnja, A., Bencurova, P., Andrýsková, L., Brázdil, M., & Paus, T. (2019). Prenatal stress, mood, and gray matter volume in young adulthood. *Cerebral Cortex*, 29(3), 1244–1250. https://doi.org/10.1093/cercor/bhy030
- Stoye, D. Q., Blesa, M., Sullivan, G., Galdi P., Lamb, G. J., Black, G. S., ... Boardman, J. P. (2020). Maternal cortisol is associated with neonatal amygdala microstructure and connectivity in a sexually dimorphic manner. *Elife*, 9, e60729. https://doi.org/10.7554/eLife.60729
- Walsh, D., McCartney, G., & Smith, M. (2019). Relationship between childhood socioeconomic position and adverse childhood experiences (ACEs): A systematic review. *Journal of Epidemiology Community Health*, 73(12), 1087–1093. http://dx.doi.org/10.1136/jech-2019-212738
- Wolke, D, & Lereya, S. T. (2015). Long-term effects of bullying. *Archives of Disease in Childhood*, 100(9), 879–885. http://dx.doi.org/10.1136/archdischild-2014–306667
- Wu, Y., Lu, Y. C., Jacobs, M., Pradhan, S., Kapse, K., Zhao, L., ... Limperopoulos C. (2020). Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. *JAMA Network Open*, 3(1), e1919940. https://doi.org/10.1001/jamanetworkopen.2019.19940

Оригинал статьи получен 01 февраля 2023 Исправленная статья принята 15 февраля 2023

Об авторах:

- **Богданова Маргарита Александровна,** магистрант, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия; https://orcid.org/0000-0001-5603-9666; m. a.trubnikova@gmail.com
- **Томенко Татьяна Рафаиловна,** заведующий лабораторией, лаборатория клиникоповеденческих исследований человека, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия; https://orcid.org/0000-0002-0652-1996; Trtomenko@ya.ru

About the authors:

- **Bogdanova Margarita A.,** Graduate Student, Ural Humanitarian Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia; https://orcid.org/0000-0001-5603-9666; m. a.trubnikova@gmail.com
- **Tomenko Tatiana R.,** Head of the Laboratory, Laboratory of Clinical and Behavioral Human Studies, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia; https://orcid.org/0000-0002-0652-1996; Trtomenko@ya.ru